Energy $-CO_2$

- short talk to follow James Renwick's talk on climate change science

Paul White and John Burnell GNS Science p.white@gns.cri.nz

Contents

Energy – CO₂ the global picture:

fossil fuels reign supreme a tale of two data sets - population and wealth good news - wealthy countries can reduce CO₂ how hard is it to meet the Paris Accord?

Electricity production in NZ:

why should we move from fossil fuels?

current sources

future challenges: generation, network, demand

Energy – CO₂ the global picture: fossil fuels reign supreme

Energy is the key sector for global greenhouse gas emissions (Ritchie and Roser, 2020):

Sector	Global CO2 (equiv.) %	
Energy (electricity, heat and		
transport)	73.2	
Direct Industrial processes	5.2	
Waste	3.2	
Agriculture, Forestry and Land		
Use	18.4	

Growth in fossil fuel use is calculated to result in a near-doubling world CO_2 emissions from fossil fuels between 1971 and 2100 (after Worldometer, 2021).

Fossil fuels provided approximately 84% of world energy consumption in 2019 (BP, 2020).

Sourc	е	World (%)	
Oil		33.1	
Coal		27.0	
Gas		24.2	
Hydro)	6.4	
Nucle	ar	4.3	
Renew	vables (other)	5.0	
	Fossil CO ₂	World	Specific CO ₂
Year	emissions (Billion tons) ¹	Population (Billions)	emission (tons/capita)
Year 1971	emissions (Billion tons) ¹ 15.7	Population (Billions) 3.8	emission (tons/capita) 4.2
Year 1971 1980	emissions (Billion tons) ¹ 15.7 19.8	Population (Billions) 3.8 4.5	emission (tons/capita) 4.2 4.4
Year 1971 1980 1990	emissions (Billion tons) ¹ 15.7 19.8 22.5	Population (Billions) 3.8 4.5 5.3	emission (tons/capita) 4.2 4.4 4.2
Year 1971 1980 1990 2000	emissions (Billion tons) ¹ 15.7 19.8 22.5 25.6	Population (Billions) 3.8 4.5 5.3 6.1	emission (tons/capita) 4.2 4.4 4.2 4.2 4.2
Year 1971 1980 1990 2000 2010	emissions (Billion tons) ¹ 15.7 19.8 22.5 25.6 33.6	Population (Billions) 3.8 4.5 5.3 6.1 7	emission (tons/capita) 4.2 4.4 4.2 4.2 4.2 4.2 4.8

CO2 generation: a tale of two data sets: population and wealth

Population Size

Large countries have a tremendous influence on attaining CO₂ targets

Wealth, CO₂ generation, power

Country	GDP/capita 2020 (\$US)	CO2 emissions 2020 (tonnes/capita)	Fossil fuels 2019 (kWh/capita)
United States	\$59,920	15	66525
Australia	\$48,679	15	64592
New Zealand	\$42,775	7	34376
United Kingdom	\$42,676	5	25528
China	\$16,316	8	23373
India	\$6,166	2	6303

Wealthy countries: more fossil fuels (per capita)

Poor countries: less fossil fuels (per capita)

Bricker (2021) Our World in Data (2023) Worldometer (2021)

CO2 generation: a tale of two data sets: population and wealth

Fossil fuel consumption per capita

Fossil fuel consumption per capita is measured as the average consumption of energy from coal, oil and gas per person.

Our World in Data

Wealthy countries:

- some up, some down

Poor countries:

increases in fossil fuel usage (per-person and per-country).

'China approved equivalent of two new coal plants a week in 2022, report finds'

- This is 106 GW of coal-fired production capacity in the year

Our World (2021)

Bricker (2021)

- Huntly 1 GW of capacity!

Poor countries want to develop - CO2 emissions will increase

Country	GDP/capita 2020 (\$US)	CO2 emissions 2020 (tonnes/capita)	Fossil fuels 2019 (kWh/capita)	Global hunger index (2020)	Expected schooling 2020 (years)
United States	\$59,920	15	66525	NA	16.3
Australia	\$48,679	15	64592	NA	21.1
New Zealand	\$42,775	7	34376	NA	20.3
United Kingdom	\$42,676	5	25528	NA	17.3
China	\$16,316	8	23373	2.5	14.2
India	\$6,166	2	6303	27.5	11.9

Social indicators

Social indicators: everyone wants to go this way

Our World in Data (2023)

CO2 reduction: good news - wealthy countries can reduce CO2 production for energy supply

The UK reduced electricity generation from fossil fuels by reducing coal use, e.g. the UK (Carbon Brief, 2019).

For example, note:

• the large decrease in coal*

• the large increase in renewables

*coal produces CO_2 at twice the rate of gas for electricity production

Source	Elect genei (TerraWa	Change in period (%)	
	2000	2017	
Oil	6.5	2.2	-66
Coal	120	23	-81
Gas	148	133	-10
Nuclear	85	70	-18
Renewables*	9.9	99	900

Energy the big picture: how hard will it be to meet the Paris Accord?

To meet the Paris Accord (Figueres and Rivett-Carnac, 2021):

- world CO2 emissions cut by 50% to 2030
- then, world CO2 emissions cut by a further 50% to 2040
- then, world CO2 emissions need to be nett 0 by 2050

This is going to be really tough:

world CO₂ production from fossil fuels is calculated to rise significantly 2020 – 2100 (White, 2021).

Year	Fossil CO ₂ emissions (Billion tons) ¹	Population (Billions) ²	Specific CO ₂ emission (tons/capita) ³
2020	34.3	7.8	4.4
2030	37.4	8.5	4.4
2040	40.5	9.2	4.4
2050	42.7	9.7	4.4
2075	46.6	10.6	4.4
2100	48	10.9	4.4

¹ Calculated as population*specific CO₂ emission.

² World population estimate (United Nations, 2021).

³ Average (historic).

NZ Electricity System and CO₂

Energy in NZ: fossil fuels provide the majority of energy

NZ's primary energy sources (Energy in New Zealand, 2020).

Source	PetaJoules/yr	Class	Fraction (%)
Oil	296	Fossil fuel	
Coal	64 ²	Fossil fuel	60
Gas	185	Fossil fuel	
Hydro	92	Renewable	
Wind	7	Renewable	
Wood	61	Renewable	40 ¹
Geothermal	196	Renewable	
Solar	0.7	Renewable	
Sum	901.7		

¹Third-highest fraction in the OECD.

² = 18 GWh/yr = approx. 3.5 *Huntly Power Station annual output

NZ electrical power production: sources (2022)

			Sourco	2022	
NZ's electrical power			Source	GWh	%
sources	Fossil fuels (13%)	ſ	Oil	5	0
			Coal	1254	3
		L	Gas	4310	10
		Γ	Hydro	26,001	60
Source:			Geothermal	8,060	19
MBIF Quarterly			Wind	2,837	6
Flectricity report	Renewables (87%)		Biogas	257	1
Lieunity report.			Wood	458	1
Generation and Consumption			Solar	276	1
			Waste Heat	45	0
			Total	43,503	101

Generation: what NZ needs to achieve by 2030: demand for renewables and growth

- current NZ targets require approx.
 30% increase in renewable energy to 2030
- this energy increase equivalent to approx.
 - 12000 GWh
 - 2.4 Huntly Power Stations that is a lot of power!
- this is a big challenge!
- big developments have been done
 - Huntly
 - Manapouri
- but, what large* developments are in construction now?

*Electrical power plant size: small < 1 MW medium < 0.8 GW large > 0.8 GW

Historical data – MBIE data tables for electricity

Annual Emissions Data table (2020), MBIE

With these global and national challenges, why should NZ move from fossil fuels for electricity production?

Arguments that we do should do this:

- 1) Environmental
 - canvassed in James's talk
- 2) Psychological
 - need for conformity
 - reduce existential angst:

"Once we start to act, hope is everywhere. So instead of looking for

hope, look for action. Then, and only then, hope will come."

Greta Thunburg

With these global and national challenges, why should NZ move from fossil fuels for electricity production?

Arguments that we do should do this:

3) Moral

- 'The Earth deserves better'
- 'Our children will never forgive us'

4) Market

- "NZ needs to show 'green' credentials to our markets"
- can NZ market its climate-change approaches to the world?

Future challenges: NZ's electrical power systems

 some thoughts about future challenges: generation, network, efficiency, demand and price

Challenges: electricity supply

How to build the equivalent of 2.4 Huntly Power Stations? —

Issues:

- no major builds are currently under construction
- ageing infrastructure

Huntly

1 GW (approx.) installed capacity.

5000 GWh/yr (approx.) production capacity

- many, many ideas under development for future power production
 - e.g., the USA's IRA (Inflation Reduction Act) will be spending billions on green energy R+D
- generation cost decreasing over time when do we buy?
- the rise of distributed power production at a variety of scales:
 - small houses, cars, hydro
 - medium hydro, solar, wind 96% of planned new builds wind/solar (Transpower)
 - large e.g. Onslow, 1.2 GW? but construction not started yet finished 2037?
- Rural land use with joint solar and agri-business?

Challenges: electricity network

- more sources and more variability in supply
 - e.g., solar daily variability; wind minute-by-minute variability.
 - how does the network cope with much larger variability than now?
 - how is power quality maintained?
- Transpower's new Clutha-Upper Waitaki lines project (2022) an excellent investment
 - increase northward transmission of Manapouri power from about 600 MW to about 1000 MW.

Challenges: storage

- storage is a potential solution to future network challenges
- naturally, solar and wind systems lack power storage.
 - should power storage be compulsory for small systems?
 - household storage = four days of demand?
 - should power storage be compulsory for medium systems?
 - system storage = four days of production?
- Meridian's 'Ruakaka Battery Energy Storage System' (2023), near Whangarei, an excellent investment
 - peak 100 MW; in the future, an adjacent 130 MW solar farm

Challenges: storage

Medium-scale

storage systems

- the price of storage is hugely variable
 - portable devices (solar cell+storage) to charge cell phones \$1,600,000/MWh!
 - household solar power storage approx. \$1,000,000/MWh!

should we subsidise storage?

Challenges: electricity demand, efficiency and price

- can we expect power to be available 100% of the time?
- should medium-scale solar and wind development be regulated?
- what about engineered and economic efficiency measures?
 - e.g., moving supply closer to source
 - e.g., price
- are we heading towards zero-priced midday-power with a surfeit of solar power?
- the unit cost of generation will it increase to 2030 with solar and wind?
- EECA (Energy Efficiency Authority): use of 'smart' appliances will increase in the future – these devices can be used to control power demand (i.e., the modern approach to ripple control of hot water systems)

Future research challenges: NZ's electrical power systems

My organisation (GNS Science) is thinking about future research needs for the electrical power system and the environment

- I would appreciate your feedback on a short survey that aims to gauge community opinion on power-system associated with climate change.
- could you please fill out the survey responses are anonymous.

Thank you very much

This talk is aligned with the Geoscience for Future Energy Special Interest Group

Aims to bring together members with interests that relate to the production of energy, providing a forum to discuss how geoscience expertise should be involved in addressing the opportunities and challenges involved in making NZ's energy system highly renewable, sustainable and efficient.

Contact the group's convenor Jess Hillman here: <u>energy@gsnz.org.nz</u> Learn more about the Geoscience Society of New Zealand and become a member here: <u>www.gsnz.org.nz</u>

References

Annual Emissions Data table (2020). Ministry of Business, Innovation & Employment. https://www.mbie.govt.nz/building-and-energy/energy-and-natural-resources/energy-statistics-and-modelling/energy-statistics/new-zealand-energy-sector-greenhouse-gas-emissions/

BP. 2020. https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/year-in-review.html.

Bricker 2021: Declining global population and its consequences https://www.youtube.com/watch?v=hNqCRvDbCVI

Carbon Brief. 2019. Analysis: Why the UK's CO₂ emissions have fallen 38% since 1990. <u>https://www.carbonbrief.org/analysis-why-the-uks-co2-emissions-have-fallen-38-since-1990</u>. Accessed 4/1/2021.

Coal 2021. https://iea.blob.core.windows.net/assets/f1d724d4-a753-4336-9f6e-64679fa23bbf/Coal2021.pdf.

Data tables for electricity (2021). Ministry of Business, Innovation & Employment. https://www.mbie.govt.nz/building-and-energy/energy-and-natural-resources/energy-statistics-and-modelling/energy-statistics/electricity-statistics/

Energy in New Zealand (2020). Ministry of Business, Innovation & Employment (MBIE). <u>https://www.energymix.co.nz/our-consumption/new-zealands-consumption/</u>

Figueres, C., Rivett-Carnac, T., 2021. The Future We Choose: The Stubborn Optimist's Guide to the Climate Crisis. Random House USA Inc., USA.

Our World 2021. https://ourworldindata.org/grapher/fossil-fuels-per-capita?time=1965..2019&country=GBR~CHN~USA~AUS~NZL~IND

Ritchie, H. and Roser, M. 2020. CO₂ and Greenhouse Gas Emissions. .https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions

White, P.A. 2021. A new kind of peak oil in the 21st Century? Geoscience New Zealand Newsletter 33. March, p 26-31.

Worldometer. 2021. https://www.worldometers.info/co2-emissions/co2-emissions-by-year/.

Our World in Data. 2023. https://ourworldindata.org/grapher/real-gdp-per-capita-PennWT

https://edition.cnn.com/2023/02/27/energy/china-new-coal-plants-climate-report-intl-hnk/index.html

Power supply

Micro-nuclear

https://www.youtube.com/watch?v=60q_l_VPhtU

https://www.youtube.com/watch?v=xxXID4e-wTE

Trompe: https://www.youtube.com/watch?v=uvf0lD5xzH0

Solar

https://www.youtube.com/watch?v=sUvaYycoWqI

https://en.wikipedia.org/wiki/Ivanpah_Solar_Power_Facility

https://www.youtube.com/watch?v=oiPSy2bKZkE

Agri solar: https://www.youtube.com/watch?v=lgZBID-TCFE

Rooftop wind: https://www.youtube.com/watch?v=XPZei_UONX0

China coal: https://edition.cnn.com/2023/02/27/energy/china-new-coal-plants-climate-report-intl-hnk/index.html

Small hydro Otago: <u>https://www.odt.co.nz/lifestyle/travel/lake%E2%80%99s-power-scheme-small-meaningful</u>

LNG: <u>https://www.youtube.com/watch?v=vOZS--1gMnI</u>

Storage

Storage: various systems, economics etc: <u>https://www.youtube.com/watch?v=zfCZKwEjR5Y</u>

Storage: pumped hydro etc: <u>https://www.youtube.com/watch?v=qBW3KpXp1FM</u>

Pneumatic storage: <u>https://www.youtube.com/watch?v=TRdn_C2WKqc</u>

Zinc-bromide batteries: https://www.youtube.com/watch?v=2wsSRq-bEm0

Redox flow battery: https://www.youtube.com/watch?v=vm2hNNA4lvM

Aluminium ion batteries: <u>https://www.youtube.com/watch?v=5B6icvUBNzE</u>

Sodium ion batteries:

https://www.youtube.com/watch?v=U40rHy9TeTU

https://www.youtube.com/watch?v=-rD8UHxzk_s

https://www.youtube.com/watch?v=ts2vRBhj658

Storage

Solar Kowhai: <u>https://www.christchurchairport.co.nz/about-us/sustainability/kowhai-park/</u>

Ruakaka battery

https://www.meridianenergy.co.nz/power-stations/ruakaka-energy-park

https://www.meridianenergy.co.nz/assets/Investors/RUAKAKA-BATTERY-ENERGY-STORAGE-SYSTEM.pdf

Solar storage home

https://www.youtube.com/watch?v=0PQmgSyarNk

https://www.youtube.com/watch?v=Dr1VTc-io1k

Gravity storage: https://www.youtube.com/watch?v=lz6ZB23tfg0

Storage

- Compressed air energy storage etc
- <u>https://www.youtube.com/watch?v=GCOnAmGzT5M</u>
- https://www.youtube.com/watch?v=sVDh_4ymcyY
- https://www.youtube.com/watch?v=ErporgO9UaA
- https://www.youtube.com/watch?v=UhNgG3QDS-g
- **Storage:** <u>https://www.youtube.com/watch?v=EoTVtB-cSps</u>
- Super capacitors and graphine: <u>https://www.youtube.com/watch?v=swdyGHvmXw0</u>

Network etc

USA spend on green industries

https://www.youtube.com/watch?v=7OBFMCAQrTo

Power grid

https://www.youtube.com/watch?v=qjY31x0m3d8

https://www.youtube.com/watch?v=v1BMWczn7JM

Clean energy milestone

https://www.bbc.com/future/article/20230414-climate-change-why-2023-is-a-clean-energy-milestone

Electrical power futures: Blenheim MRC talk 8/5/2023

- Please respond to the following statements on a scale of 1 to 5:
 - 1 = totally disagree with the statement
 - 5 =totally agree with the statement

Power reliability: my property needs 100% reliable national power network.

Climate-change response is the main challenge for the future power network.

NZ's renewable energy generation will increase by 30% to 2030.

Distributed storage is a key strategic issue for the national power network.

Medium-scale power storage is worth subsidising.

3.9

4.2

3.2

4.2

4.3

In addition, MBIE is seeking your input on the future of electrical power in NZ:

https://www.mbie.govt.nz/about/news/have-your-say-on-the-futureof-the-electricity-sector/